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ABSTRACT: A generalized shot noise in Banach spaces is defined as the a.s. limit
of certain centered sums of dependent random vectors; and, a necessary and suf-
ficient condition for its existence is given. As an immediate application, the
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I. Introgdction. In this paper we study the convergence and limit distribution

of the certered sums

S

P
- e S
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R A

(1.1)

"net~13

H(Yj; £j) - An ’

j=1

in connection with series representations of infinitely divisible random

vectors. Here £wj} is a sequence of arrivial times in a Poisson process,

‘-
"5 -

J
and H is a Banach space valued function.

is @ sequence of i.i.d. random elements, which is independent of {yj? .

Series represertations involving arrival times in a Poisson process have
been given by Ferguson and Klass [4], for real independent increment processes
without Gaussian compcnents, Kallenberg [8] showed the uniform convergence in
the Ferguson-Klass decomposition and Resnick [18] related the decomposition
tc the well-known Ita-Lé@y representation of processes with independent incre-
ments. A series representation of Hilbert space valued stable random vectors,
that generalizes the Ferguson-Klass representation of one-dimensional stable i
random variables, has been established by LePage, Woodroofe and Zinn [12].

LePage [10] observed that symmetric stable random vectors can be represented i
as conditionally Gaussian, This important property has been generalized and
extensively used by Marcus and Pisier [15] in their investigation of continuity
of stable processes. Marcus and Pisier's work [15] showedhthe significance of the
series decompositions in the study of stable probability measures on general
Banach spaces (see also [5], [2], (19] and [21]). We refer the reader to [15]

for a rigorous proof of the representation of symmetric stable vectors with
values in arbitrary Banach spaces. A generalization of the one-dimensional

Ferguson-Klass representation to the case of random vectors taking values in

Banach spaces of cotype 2 is due to LePage [11]. Since this assumption on
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2
the geometry of Banach spaces is too restrictive for many interesting applications
of the rerresentation (e.g. for studying the continuity of stochastic processes),
it is necessary to investigate series developments without any restrictions on
the Banacn spaces. The validity of the LePage representation for certain
symmetric infinitely divisible random vectors in general Banach spaces was
stated by Marcus [14] (techniques similar to those of [15] can be used in that
case, the general non-symmetric distributions considered here require different
methods ).

The main goal of the present paper is to give a simple and general scheme
of derivirg series representations of arbitrary Banach space valued infinitely
divisible random vectors. Our approach uses an idea of Vervaat [22] who obtained
the Ferguson-Klass decomposition of positive random variables as a particular
case of a shot noise (for more information about shot rcise see [22] and re-
ferences therein). Since only a very restricted subclass of infinitely divisible
probability measures can be represented by means of a shot noise (see Corollary
4.3(iii)), we introduce and study a gencwalized shot noise, which is defined
as the a.s. limit of the centered sums (1.1). We obtain a full characterization
of the corvergence to a generalized shot noise in Section 2. 1In Section 3 we
discuss certain special cases of the generalized shot noise and resulting
simplifications in the centeres An . The results of Section 2 and 3 are
applied to derive series representations of infinitely divisible random vectors
in Section 4. This approach enables us to obtain various series represent-
ations, which generalize those of LePage [11], in a unified way, while avoiding
many obscurhg details due to specific farms of the function H 1{s concrete

situations.
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Finaily we would like to mention something about the methods in this paper.
To determine the convergence in (1.1) we use a slight modification of the
technique previously employed by Ferguson-Klass [4] who transformed certain
dependent summand series into independent ones. The modification is that
we associate with (1.1) a continuous time, independent increment, stochastic
process, instead of the discrete time one, so that (1.1) is obtained by a
random time substitution. This approach jives the results on the Lp-convergence
‘r-ediate’ v [see Ccrzliary 2.5), and reveals a martingale structure of the

decompositicn {(see Corollary 4.3(iv) and Theorem 3.1).
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o 2. The ccnvergence and distribution of a generaiized shot noise.
ag: We recall and complete some notation that will be used throughout the
3 '.
33: paper, iij}jgl is a sequence of i,i,d. random elements taking values in a R
e :
v measurable space (D, ) , with the common distribution ‘Z(Ej) =), By
RV {N{(t) 1y, is denoted a Poisson process with parameter 1 and vy, fis the jth '
3 —
é?’ arrival time of N(t) , i.e. vyt infit > 0: N(t) =3} ,3=1,2,...
L) - .
" {Uj;j=] stands for a sequence of i.i.d. uniform on (0, 1) random variables.
c‘r' - . o T N \ . ' 0 .
%? We assume that iivyy *“(t"tzo and {Jj;j=1 are defined on the same
?J probabil-+y space (., s, P} and they are mutually independent,
\.g
LI
] In order to use the method of Ferguson and Klass [4] mentioned in the

Introduction we shall need the following lemma which in the case X = R can

be deduced from Lemma 2[3] and then easily extended to the case when 4 is

a separabie Banach space., Since this lemma constitutes the first important
ﬁ} step of the method and also may be of independent interest, we shall give

ﬂ
oy below a straightforward and different proof in a more general case.

o LEMMA 2.1, Lot (U, B) be a measurable vecton space and Let G: (0, =) »

KN C-X 0eameaasutablc map, Tien: the Y-valued stechastic process given by

N(t) . |
X(t) =, Gly,, §&,) ,t>0,
( jzl Yo € >

WY nas dndependent dactements and

~ N(t)

ot Z(x(t +s) - X(s)) =20 ) G(s + tUJ. Ej)) .
O j=1

s )

e " 3 v - i - Lol NN T W AR IS 5.5 L S Bl RN AN AL TS LUL L S LAY I R TNG % ) »
t Aty Wty 3';‘:':'2'\.%,,'.“‘, iyttt ¢ PRSNGSR R Ch S R PR AR ON U A B alr e SO A RN At 3y
N K Tty 1y

Al g GBI S o DRSO M et o ~LCR LRy Oy LA 1 0L N WO 8
E L T e e S B T T DG N e M a0 M et B e 5 VN 1Y BSOS



)
Proci. let 700 = c(N(s): s < t) and ;71(‘2’ = clgys onn Ek) . Put

(2.1) ;t = {AeZ: AN {N(t) <k} e?’i” v?ﬁz) for every k > 1} ,

Then {‘f't}t>0 is an increasing filtration and ({X(t)} is adapted to this

t>0
) filtration.

At In order to prove that {X(t)},p0 has independent increments it is enough
to show that <(X(t+s) - Y(s)) and _‘FS are independent for every t, s > 0 .

iy let Aes  and B «Z . We get

P PX(t+s) - X(s) e B, A} =

-

e (2.2) 1 Pix(t+s) - X(s) € B, N(s) = i , N(s+t) = i+k, A} =
i,k>0

o A R X
an L P 6lvs. 85) € B, Ntss) - N(s) =k , AL,
‘\,t’ i, kzO j='| +1

) where A = (N(s) = i, A} e 7\ v (2D by (2.0). since

o N 14k : ) i ik : (1) )
i ) Glyss & = G(s + v, ., & ’
i a3 g =it

th

E where v is the m~ arrival time in the Poisson process u

s m +k

“: : N(u+s) - N(s) , u >0 , we conclude that the events A, and {32 1G(yj’ gj) € B,
=i+

N(t+s) - N(s) = k} are independent. Therefore the last expressionin (2.2) is

Pt equal to

"y
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- k N(t)
} Pl G(s+'-j,§j) e B, N(t) = k}P(A) = Py § G(s+yj.£j) € BIP(A) ,

k>0 = 3=

which proves the independence Ofi g(X(t+S) - X(s)) and F_ as well as the
N{t

equa]‘ity :{(X(t"‘S) - X(S)) =$( 2_ G(S"’ij Ej)) .
=1

In tte proof of the second part of the lemma we shall use the well-known
fact that the condtional distribution of (v, ..., YN(t)) given that
N(t) = k > 1 is egual to the distribution of (tU(]). RN tU(k)) , where
U(J.) is the jth order statistic of U, ..., U - We have, for every

Bek

G(S"’Yj’ gJ) e B =

0

N(t)
P{ ) G(s*tUj. Ej) « B},
j=1

which completes the proof.

LEMMA 2.2. Undes the notaticns of Lemma 2.1,4f (X, #) = (R, Dpl, then
(t

(i)  Ex(t) = ! [ G(u, v)r(dv)du ,
Jo Jp

pravdded citict one of ne above quantities, cn the Left o rignt sdde, excsts;

'J'w -W‘l‘ 'u‘:“‘o'm't ’v.n e " paladod i "'*}"" ) Qe “-"'.'af At AL
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Ft f - i6lu,v)
(ii) E exp[iX(t)] = exp€' ; [e 17:(dv)du? .
Proci. By Lemma 2.1 we get
N(t)
£ x(t) = e[ ) 6ltu,, £)] =
3= 37
. k
T B[] 6{tu,, £OI(N(t) = k)] =
o =t 4
k
- tt -t
) k E[G{tU,, 5 )] =y e " =
kEO 1 1 3
i
tEGI{tU,, £,) =t  G(ts, v)i(dv)ds =
1 1 jo D

f: JD G(u, v)A{dv)du ,

which gives (i). The proof of (ii) is similar.

The method of random time substitutuon will require the existence of the
limit as t - < for almost every sample path of the associated stochastic pro-
cess. The next Temma will be useful for this purpose. Its proof is

routine and will be omitted.

LEMMA 2.3. Let {Y(t)},,q be a stochastic process with values 4in a separable

metilc space and whese sample paths ate aight-continuous. Then 1im Y(t, @)
¢t

exists fer a.e. w44 and cnly 4§ §cn every increasing sequence {t }n=1

- witi 1im to ==, the sequence {Y(t )}n=1 convenges a.s. .
v, s

el

L

o

)
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To stite and prove the main result of this section we shall need some

notation trat will be also used throughout this paper. E will stand for a
separable Banach space with the norm [l+|| and B = {x € E: |x R ' 1
r > 0(B_ = E) . The dual of E will be denoted by E' and ({x',x) =
k'(x) , & ¢E' , x ekt .

We recall that a measure M on 3. with M({0}) = 0 is said to be a

2

Levy measure if for every x' e E', J ({x', x}° A 1)M(dx) < » and for some
E

{each) r = (0, =) the function ¢, defined by

:r(x') exp: : [e1<X XYyl i(x',x)IB (x)Im(dx)} ,
E r

x' ¢ E' , ‘s characteristic function of a probability measure on E . The

probability measure with characteristic function ¢, will be denoted by

c Pois'm ‘see: deAcosta et al. [11).  If M is a Lévy measure and additionally

j Cx'M{dx; < = ({ ;xxM(dx) < o , respectively), then we define c_Pois(M)

B
1 1
(copois(M), respectively) as a probability measure with characteristic function

¢ (co , respectively).
Let H:{(0, =) x D~ E be a Borel measureable map and define a measure F

on ;"35 by

(2.5)  F(A) = )f: FERVSICTRMICOLTINERE A

Note that F(‘0}) =0 . Put

t
ae) = 1w, v (W A (@ndn, €20

‘04D

z‘ﬁ"’ ‘\

’l \f l‘;

:,:,.:‘n:,:tt.;gt.:.:,‘ A c‘.?l&'l'g':'q‘ : .‘:‘\‘.\ DO 2 - QJ'J'N\ ..'\ » ")"' AN 'Jl; ‘\.r‘,('\-T’)n ST ‘,. W \\ -

e u . D000 1'1 -5 " ) CH) 4
RO A SRR N V.S’nu OO AT S n'«.‘:. ’\
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THEQREM 2.4, Lot To= LI ;j) - A(nn) . Then ‘T } converges a.s. in tie
=1 . .
peam cf B 08 and omy 4 F o4y @ LSey measute en E . Furthetr, 4§ F 48 a

Levi measuse and T = 1lim T » Lhen

n--

e e e .

SiT) = c1Pois(F)

; pe-~{. let
. Nit)
\ T
! { = . H{~v.,, Z.) - . 0.
s Xit) 5 H( ; J) A(t) t >
J.—

g
i By Lemma 2.1 {X(t)?t>o is an independent increment E-valued stochastic process
\ > ‘
; with right-continuous sample paths. Using Lemma 2.2(ii) we get
.
‘

«f - ; (t)
. (2.6) ZX(t)) = cqPois(F ™)
o
.:" where
2
' (2.7) F(t)(A) = [t [ 1 (H( v))i(dv)d Ac?
,‘ . .'0 }D A\{O} u, ' u € g
’
v (note that F(t)(E) =t <)
; Assume first that F is a Lé@y measure. Since F(t) PF as ¢t P,
: we get
i‘t -
R
]
_ c1Pois(F(t)) = c]Pois(F) as tp®
x
X
‘l
R (see deAcosta et al. Theorem1.6). Hence, by Itd-Nisio Theorem ([7], Theorem 1)and (2.6),
; {X(tn)}:=1 converges a.s. for each t, <t, < ... <t =« . Inview of Lemma
4 2.3 X =1im X(t) exists a.s. Clearly, Z(X) = ¢ Pois(F) . Now we notice
L

gty Fle 4 iy
% l‘:‘.‘q.l v.l'g. i "'.'

I -\v

.\': ':‘ "l"‘i"‘: ‘o' .o"' ":' ‘a‘ ‘t”

) & ()
5@ s'..i'll' u’-‘. .’ l4 ‘( K] ‘ﬁxl
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that Tn = X(~_) and ~_ - = a.,s. Therefore Tn -T =X a.s. as n -~

n n x : !

which ends the proof of the sufficency part of the theorem,

Now we prove the necessity. Assume that {Tn} converges a.s. We have,

for every t ,

(2.8) Ty(t)er = M)+ (t)

where

Vel = mlpae Sygya) A - Al )

By Markov property cf {N(s)}sso , the random vectors X{(t) and Y(t) are

in- i - - o £
independent for each t . Since TN(t)+1 T a.s. as t , by (2.£)

o

;{(Xft))}t>3 is relatively shift compact. In view of (2.6) and Theurem 1.6

in (11 F is a Lévy measure. The proof is complete.

CPOLLARY 2.5, Lot F oo a L&w miasuse and J c”xﬂpF(dx) < ot oserme
B

1
Q<cpe=. Tugn T ~T,  as. and Lg .

Decra, Since ExP o<« , E sup TX(t)Qp < » by Corollary 3.3 in Hoffmann-
—— [T 0_<_t<cx: ' '
Jérgensen [6] . Hence

Eosup TP = E sup!X(v )P < Esup [X()IP <=
np T np“ nfi = 0<teo i W ’

which ends the proof. o

REMARK 2.6. Theorem 2.4, when specified to those Banach spaces for which a full

characterization of Lé@y measures is known, gives definitive conditions in

terms of the function H for the a.s. convergence of {Tn} . For example, if




T LT TW OO e R il adi-abd TS et ot Sak e 4 i Al 4 B2 h g f o s e R s —

N

E=R" or more general, if E 1is a separable Hilbert space, then
lﬂc '-
‘04D
convegence of {Tn} . Similarly, if E =2P , 2 < p <=, the conjunction of

(1A Hlu, v)) 2“(dv)du <~ is neccessary and sufficient for the a.s.

the following two conditions is equivalent to the a.s. convergence of {Tn}

=t | |
Ja | (1 A Py, V)-,,p)l(dv)du < ®
0 -D
and
R f f "(Hlu, v), e !ZIB (H(u, v)IA(dvidul™? < o |

where {ej} denotes the standard basis (see [13], p.79).

! " m.'l’ﬂ"c' Nv ; A ’&\M B Vi u.w' v \V\g LT v\_v‘.( OGN (0 - "'-["Vf'
DA ! ORI W gu O W0 A
AT nﬁ,vw R SOUEHIOY XY ) »i o’i h 'h ." I 1y 1”‘1 AN .h .0. .6@ (A .’!;‘. ¢ ).““ AN %1‘ 0 kﬁ"‘ﬁ'é:l"‘ N0 ‘.. ',‘p ,.; h" R ‘k‘ B :n " “‘.Q:“.‘
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3. Conver-ence in some special cases.

In this section we shall discuss some interesting modifications in (1.1)

which are rossible when F satisfies certain additional hypotheses.

THEROREM 3 1.  Astume that F o, deddned b4(2.5), 48 a Lévw measure on B such

that [ xp Fldx) <= get seme p2>21 . Llet

s
B
it
() = | ' H{u, v)i(dv)du , t>0 .
-0-D
5
(1) ¥ = L H(‘~j, :',j) - Clv) s n > 1, 4y @ mastingale with tespect te
J:

‘\"]’ ...,“'n,i].---,in) [

(1) M =M as. and n L‘E as N,
(iii) Z(M) = c_Pois(F)
Psccj. First note that C(t) s well-defined as a Bochner integral. Indeed,

t

o Jro 4w, VT (L, V) (dv )du

t
lf ( IH(u, v)IA(dv)du < t + f
)0 )dl | — ]

Ix|PF(dx) < = .

A

“f ;
c |
B

N(t)

Put X,(t) = % H(yj, Ej) - C(t) = X(%) + A(t) - C(t) , where X(t) is defined
54

in the proof of Theorem 2.4. In the proofs of Theorem 2.4 and Corollary 2.5

we have shown that

<A XM \ L% WALALS, AEONERA AN AR SIN
AR TR

UK ORI R

0.‘
]

# X,
\'u'."i i
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¥(t) - X a.s. as t o=,
B L(X) = c,Pois(F) and

‘ E sup !X(t)"P <
&f . Oit<a;

o Since

!
i ALY - €(8) == 1 o T (Wuy )@ = -] x dRGa)
'f; "O '!D B] B]

b as t -« , we conclude that

¥

18 X (t) ~ X% as., as t-e,
Z(X) = c Pois(F) and

(3.1) E sup !'X (t)"p <™,
0<t<

[ _ By Lemmas 2.1 and 2.2, {X1('c)}t>0 is an independent increment process with
K right continuous sample paths and EX1(t) =0 . Moreover, {"1“)}»0 is
g adapted to the filtration vt}t>0 defined by (2.1) and x](us) - X1(s) is

- independent of ,‘Fs . Hence {X.l(t) is a martingale. By (3.1) andthe

t>0
.v
::: Optional Sampling Theorem

;
0 | |

|‘¥

i ":"':1'"0".0, w A Ao e i "’!“' ‘-"‘a*"c'. SR u"‘w".o R e b """""? B

Q.O 1 I ' |lg s X h s ' \J‘\ ‘.s:;fl
Nt " ‘ """"‘a‘\Q UL e 4"""” : "sf‘v‘ l“l‘.;‘si”‘m"t*'i"‘ E st



oo T T TR R, WA T AT T T e

14
form a martingale with respect to

L
n &

7oz ey el Ypr Sy e En) and clearly
N
):] a.s. and in LP_ . The

£ proof is complete,

(K}

THEOREM 3.2. Assume t.at
f

Fodedonad cv (2.5), 4y a L&y measure such that
"X'Fldx; <= . T.oa
)B] i i

Ss,) = c Pois(F)

Pwosf. Since

3 f’l;H(U- v),Tg (H(u, v))A(dv)du
-0-D 1

[ e <«
By

it follows by the Dominated Convergence Theorem that

A(*,n) -~ J( x F(dx) a.s

.y &5 N > @
B

An appeal to Theorem 2.4 completes the proof.

The other case when the centering in (1.1) is not needed occurs when F s
symmetric. From now on (ej}‘;,] will be a sequence of i.i.d. random variables

, . 1
e =21} = - z -] =
such that Pg-J. 1} =1 Pxej 1; 3.
1

Further, we assume that {ej} .
j are independent of each other.

d {:
; and {:
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THEOREM 3.7, Aesume tnat F o, dosdnca tw [2.5), 41 a Symml e Lovy measnie ¢i

£ . Te.on

. n "

Sn = .£1 EJ.H(\'J’ E’j)*sm .y, as n-+w,

J

Z(8,) = ¢, Pois(F)
PLoca. We can write

. Q . v

o= H(.?-s E) ’

N it

v v N

where éj = (5j. Ej) takes values in {-1, 1; x D, H(u, v) = v]H(u. vz) .

u>0, V= (vys vy) € {1, 1} x D . We have

Yooy 2 () ]
FE2E) = (5 §q1t3 §) xx,

J
Thus
F(R) = }fm f IA\{O}('Mu, V))A(dV)du =
6121,1:xD
3 F(-A) + 3 F(A) = F(A) , A eBg,
and

» rtor ~ " . P
A(¢) = j i H{u, v)IB (K(u, v))X(dV)du = 0 ,
0 1-1,1:xD ‘

byl 1) t) LX)
0?::‘ 'G:l () ."“:‘" ’:‘g‘l Y ’l .t‘:l.:‘l.‘:ﬁ‘q ‘l.. .", A
U RO USRI

L

O
I
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for every t >0 . Theorem 2,4 completes the proof.

Random centers An = A(nn) in (1.1) provide a fine connection between
the center=d sums and the associated compound Poisson process. Random centers
An = C(yn) are also necessary for the martingale property in Theorem 3.1,
Nevertheless, it is an interesting question whether random centers can be re-
placed by non-random ones and the a.s. convergence still would hold? We could not
answer this question in its full generality but under certain additional con-
ditions the answer is ves. To procede this question we begin with a 1emma that
is a special case of Lemma 4 in Klass and Ferguson [4]. We shall give below

a short proof of this lemma and also indicate that our method can be easily

extended to obtain a new and short proof of Lemma 4 in [4].

LEMNA 3.4, [.?f g be & non-dictaasdns sguase anteguable guncticn degdncd on
(0, “") . Tl
r‘7n

glu)du = 0 a.5., as n»=
‘n

Proca . We have

.’

(3.2) | alwdt] < glypmn) Iy, - nl
n

by the monotonicity of ¢ , further, by the Strong Law of Large Numbers we have

with probability one:
(3.3) g(ynﬁn) < g(%) eventually,

Using Hajek-Renyi-Chow inequality [3] p. 243 we get, for every ¢ >0,

. G 7,5 S WLAIRARS T 'b"‘ N},\ N AT AU '\-\‘-},‘-‘ 's- ‘ ‘\-" By ¥
[N '.0.?‘4 '.t",o e ‘.ﬁ'! " '9,0 ‘qo“.i".c L ',o",o e " R LN ) ‘,n 0 O:g ',i Ll X

~ l‘h‘"l‘.’ ¢ "l‘"l‘“l‘.

HOMWX]
c.. l:u'!ﬁw !,» N,e ,vl, ,: e
h

’\‘n

—
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Fimax  g(3) - ko> &

tl_<_k_<_n k=m

rof x
7
|~
Lid)
[V
—
~Nx
~—
)
©

iua . as m, n-~e _ Thys g(%) A n -0 a.s., which combined with (3.2) and

(3.3) comp etes the proof.

N THEQREM 3. Avsumc tat F, diddined ke (2.5), 48 a L&vuy measute ¢n B suli
l“ r
'.‘;' ti.at | (,+ 2/\ T)F(dx) < = . Surncse tnat, 40t each v € D, [H(u, v), 43 a

wy
-

T

N IINT L, At 2f e (0, <) L Thow

g .
as Vo= AC) - An) = " { Hu,v) g (H(u,v))a(dv )du
3 ‘n <D 1

ke and

R glu) = {io(;u(u.v);z A (av)2

ah’ : .
‘S g 1s non- increasing,

foad .2

ol ‘ 92<u>au=J '8 A1)F(dx) < ,
' Jo E

e and we have

. "
. \ ’v’

LA AN

B2 ST CanCOTLTATIER AN T 5 L R M WO ORI DA Sl
P A ‘1.}: ’ o TN " , .l’l:l?""".:"::ff.:\‘t‘ :ﬂl,ffilu?c,'s”" e .“‘r'..‘;’6'\?ﬁ?r.~::?l:',l)q~’:~.Q‘ ot "
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g 0 '
.an: il n [ (“H(U.V)“ A ]))(dv)du

| A

el
-
(I

by Jensen's inequality. Applying Lemma 3.4 we get Vh + 0 a.s.. Theorem 2.4

completes the proof.

AR
. A

e -""ﬁ’

" (AR v 2 ¥
OEDASANCI M o,
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4. Series representations of infinitely divisible random vectors.

Let 7 be a Borel measure on E with F({0:) = 0. We say that F admits

a8 nedas desomeosditao witn wesncst to a Bewed set D, 0 £DCE, if

(4.1) FIA) = jD ;(o )IA(tx);(x,dt)l(dx) A8,

. e
where 2(x, ) en

is a measurable family of Borel measures on (0, =) and &
is a Borel probability measure on D . The phrase "pclat decompcsditicn” will
always mear a polar decomposition with respect to the unit sphere D = S1 =
e B x =10,

A polar decomposition of L€vy measures on Hilbert spaces and its application
to stochastic integral representations of infinitely divisible processes were
studied by Rajput and Rosinski [17]. We shall show here that also Lévy measures
on general Banach spaces admit polar decompositions so that (4.1) can always be

assumed. In fact, we shall prove more:

PROSITITION 4.1. Lot M be a Betel measure on E such that M({0}) = 0 and

M(si) <o sev vty r >0, Then M admits a pelar decompesdticn.

Pocci. 1f F =0, then (4.1) holds trivially with p(e, *) 2 0 and an
arbitrary » . Therefore we may assume that 0 < F(E) < = . We shall con-
struct a Borel function f: [0, =) = [0, «) that vanishes only at 0 and

satisfies

£ x )F(dx) = 1
€

:'--(c:l o
Let o infir: M‘Br) 0 , 0« ro<« . Define

ODAOSDROAGA D ERACEARARTEARRKAAN ARSI SRS
Wt e 3‘,:0'»1#,‘,&)' §hE, 'ig‘ﬂ“.' ,‘ib,:i';:l‘:‘:].:'r 3.*1‘5“‘. B
I
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{ [etM(Bg)J-] if 0<t<r

0 otherwise.

“o,-1
)" e(t)dt . f vanishes only at 0 and

‘0

Put flu) = (1 - e

: - )
(M) = (1 - e 9y J' J" o(t)dtM(dx) =
-t £ ‘0

TTo-1 7 g
(1 -e Y)Yy | ¢(t)I (t) M(dx)dt =
JoJe 7 (0. ix)
(1 - e-r°)°] Jrroe'tdt =
0

Define now a probability measure G on E by G(dx: = f( x, )M(dx) . Since

G({0:) =0, G0 ¢ 1.'] is a probability measure on Sy X (0, =) , where Go =

E\;O}’a“d < ENIOZ v sy (0, =) 1is defined by wu(x) = Qxéx M

Let ) be the marginal distribution of Gy o v~ given by

G

HB) = (e B X (0, ), B e g

Using the well-known fact on the existence of regular conditional probabilities

we get that there exists a measurable family {v(x, 9} of probability

X €S
1
measures on (0, =) such that, for every C ¢ 435 x(0, =)
1

v L=l . f
1,:‘. (Goo A4 XC) }S1J ’a)xc(‘lt)v(xodt)x(dx) .

Hence, for every A ¢ ;EE

WOOR i SIEEA .
e el

)



L)
2 2)
; N )
} C(A) = GO(A\;O;) = IA(tx)v(x,dt)A(dx)
!‘ I ’ «
‘)
| which yielcs
- FA) = | ﬂ——’—] G(dx) =
; RSP O )
“
v 1 . |
f j ; .?rrlliijt-j-- I ,\ ( 1:’( ) v ( X ’ <1‘t ) J\ (<j X ) )
1 Sv(ojx)
] t
'
L)
# ¢ . . 5, { X d t R
{ L LR t) 5 (dx)
S, (6,=)

)
h . ) . . v(x, dt)

Therefore .4.1) is fulfilled with ¢(x, dt) = —(TETT_ .
)
& ; . , . ,
¢ PROPOSITION 4.2. Lct F be a Boted measute ¢n E satisfuing (8.1), Let, ges
N
. ac. vV €2,
8 (4.2) R(u, v) = infit > 0: (v, (t, =)) < w} ,u>0,
\i
;
, be the gt contdnucus dnverse of the function t -+ plv, (t,-=)) . Then Zic
, junction H dedined by '
. H(s, v) 2R(u, v)v
b
A)
Y,
’ . .
: satisgdies (2.9).

Pucd  For every A eJE,E we have

et 0

) 4 F,
ﬁ'y&_"ia

L RSO PR I W OO WIS B OO IO (] JO (X, LM, LOOOTCONE
NI N AN I"o‘l?ﬂ.iv‘: h’n‘lf"t‘,“‘aﬂ'l‘g oty ,l:;. :‘I“;'l,:q’lggﬁ:g‘l D) :'I‘lil!g!i W J‘:‘If:.l.& ;'l
U RN : ATh\ A AR
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“~ ,
;

D S , ) 3 =
51y TAD: (R{u, v)v)i(dv)du

JD[jo IA\iO} (R{u, v)v)dulr(dv) =

N ot

fo[fo IA\iO}(tv):(v' dt)Ja(dv) = F(A) ,

where we utilized the fact that Leb({u > 0: R(u, v) e (t, =)}) = c(v, (t, «)) ,

t>0.

The results of sections 2 and 3 when specified to the case H({u, v) =
R{u, v)v give the following generalizations of the LePage's result ([11],

Theorem 2},

COROLLARY 4.3. Lot o be an dnjdndtely divisible prebabilitu measure cn g

witineut Gawnt sdan comoenant L. 2.
(4.3) = & * ¢ Pols(F) ,

wiete @ € B and F 43 a Levw measure, Assume that f admits a pelar decom-

n
nosition (4.1) and £t R be defined by (4.2). Put S, * } R(yj. £j)gj and
o =

t

r
A(t) = | R{u,v)vl, (R(u,v}v)a(dv)du , t > 0 .

J 8 -

0’D 1
o Then
o (1) s, - Alx) convergesans., as n»w ,and & (Un[S -Aly )+a))=u. 14
l»,"l"
Lty f s
- ’ ux“pu(dx) <® fgeo seme p > 0, then the cenvergence ncdds alsc
‘ Lt e LpE HE

N

ieh

'}

&

AL PRI X R R A R A S AR AT OO L7 EINE R N ) 4 AOCOGHROSHA
AR ,’é‘.*’ll%“\(!“f.i:“!&/ﬁ&tlai R R A ‘é'?'h‘-"’f‘r'ﬁ? B . '_«;‘,‘._ﬂ’@iu\f;‘,‘-,‘— v : ?h,t,‘,‘ At




: .. oL 2 .

. (i) o« 'E(.,X,, AF(dx) < =, tion S, - A(n) comveges G.t., as n >,
t ’

N uid :,(Hm[Sn-A(n)*'a]‘) = L,
"y [ ’ ,[ . I
; nn)I;m“nﬂv)<w.tw:%cmwwuma,m N+, and

¥
:' ]
’,: &(lim S +an) = U, where a, = a - ."B XF(dx). In addition Sn
converges Ln Lp provided fElinlpUde) < o, forn some p > 0

) 9
' :
i Vv Ta o x T aldx) <« gexseme p> 1, then M =S - C(y.)

. - n n n

‘

€08 manteaats wdh sessect 2o olyps s Y B ),

i)
) M, convenges 2.t and 4 LpE s as n =, and .f('l'imMn+a.|) =

: N chxF(dx) and

' 1

3 ty
: (el = ' Riu, v)valdv)du , t >0 .
; '0 'D
.
- WU .

| ViOTE L L8 symmetiie, then S -Jl]sj (wj. Ej)ﬁj converges a.s. as

a . n-~« and i(1im5n) =y . In additicn, %ﬁ convenges Ut LE prevaded
b j x Pldx) < =, fek seme p >0 .

. £
& Pwcc4. Inceed, by Proposition 4,2 the equality (2.5) is satisfied. Thus, (i)
g

. follows from Theorem 2.4 and Corollary 2.5; (ii) is a consequence of Theorem 3.5;

[ _

' Theorem 3.2 justifies the first part of (iii) and the second part follows from Corollary

t

; 2.5 and the observation that “A(Yn ' s uniformly bounded by JB [ix['F(dx} ;

d (iv) is a corollary to Theorem 3.1; (v} follows from Theorem 3.3 ald Corollary

2.5. The proof is complete.

[}
g .
: A few comments is now in order. First note that Corollary 4.3(i) and (ii)

L]
5 generalize LePage's Theorem 2 [11] by removing the restriction concerning

‘l

the geometry of Banach space E and in our case D may be an arbitrary Borel set. This

X makes the representation useful in investigation, for example, general infinitely
' divisible processes with sample paths in arbitrary Banach spaces. The results on the
!

e ¥ .uf"w IS RIS )
K n.tu ahale) ;‘73,.:‘,‘,% -‘n ual‘; :,“ ety ,w, 2 ,s}"ﬂ‘ Wiy
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LS -converc=nce and the martingale development given in (iv) are also new. Finally,

we note that the centering constants in LePage [11], Theorem 2, are erroneous. They

should be assumptotically equal to A(n).

The representation of u becomes simpler when a polar decomposition of

Fis of product type for some D , i.e,

(4.8) T(A) = { T ‘IA(tx):(dt)k(dx)

L :(G’m)

for all A eBE - In this case, c(x, *) = o(+) is the same Lévy measure

for all x's .

LEMMA 3.4, [t F Ec a Levy measute o [ aldeh satlsgdes (4.4), whese p o4
ocuded. Taor | (1% AYF(dx) < = |
E

~ - !

Puey. Let d = sup{ix,: x € D <= . We have

2

£ r ‘
e Lo A 1)F(d0) I J(o’m)(:{txfz A 1)o(dt)a(dx)

(d2t2 Al)e(dt) < =

|A

)00

The above lemma and Coroliary 4,3(ii) give the followi;\g

COROLLARY 4.5. Let u be gdven by (4.3) and Let F admits decomposition (4.4)

witin. D bcwided. Degine

Plu) = infit > 0: c((t, =)} <u} ,u>0,

BANS RN AT OEIROCTON
I‘t‘b"c . *lé.k‘z*ﬁé“,h'ﬂ:_“ 3

Ay
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Coganciion t>e(lt, ®)) . Thom

[$-2N
194

ey . ad L R Em ordliled Livii e (e

R(V.)E. - b+ a.s., as + ®
. (‘J)J n a->T n

<
-
Wi~13

KN J

,
W b= i [R(u) !

(R{u)v)a(dv)]du .
g Bl

N EXAMPLE: General stable distributions.

@' Let . be a p-stable probability measure on E , 0 < p <2 . In view of
$* L€vy spectral representation theore™ there exists a finite Borel measure <
. on S] and Xg € £ such that the characteristic function u of 3 can be

L written as follows:

(4.5) u(x') = expi-f ', x ) Po(dx) + 10 (o,x') + i Xghl

q .
t S'I

:;'" where

r
e tan(wp/2) J | ¢x',x}|Psign{x’ ,xdoldx) , p £ 1,
v, S S]
x') =
| Qp(o ) ,
XY, -2/~ J ' L,xYen|(x' x}|o(dx) , p=1,
N s]
! (for this and further facts concerning stable measures we refer the reader to
Linde [13], Chapter 6.3). In order to obtain series representation of u we

- write . in the form (4.3). Elementary computations give

BN

2 b 310 l | d DOGLIE
W 'A“.“‘ N n' A "‘ oo " "' I' .A‘ ':' ‘A‘ 'A‘ 'o'n a'.’s‘,';',‘.’ NOASAIOO0D ”ﬂ "l u‘ "i e "u’.‘t}u :’ ‘0 3 "C"?i‘l‘@;‘ WL el
. LA AR AR N 0T

""lgfg.)a (

a‘ a.
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2€

x. -(c 59-1))'1:(31)7, , P #
4 p c

xo = 2(1'1)/-{ O(S] );G s P = 1 [

where cp = cos(-p/2)-(-p) , P #1, ¢y =T%/2 , ¥ denotes Euler's constant ,

and -

X_ = ! x:(dx)/s(S]) .
< jS]

Further, we can represent the Leyy measure F of u as follows:

F(A) = ¢ { { I (tx)t-]-pdt c(dx) =
o ) ) Ta

f
J,S]J(o,m)IA(t:x)c(dt)k(dx) '

where ¢{(dt) = c;] c(S])tl'pdt , A(dx) = o(dx)/c(sl) . Therefore, the

assumptions of Corollary 4.5 are satisfied, and we compute
R(u) = d c'/P(s u17P
P 1
- -1/p p
where d, = (pcp) » and, for n>dj o(s) »

 p/(p-nd e Pesn' VP L P o(sITRL b o#

bn =

] 2/=[enn - in(2/7 c(S]))Jc(S]f;o yp=1.,
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Under the above notations, using Corollaries 4.5, 4.3(iii) and (iv), we

obtain
. COROLLARY 3.6. Let u be a p-stable probability measure on E  with the

chawacternistic guncticn given by (4.5), 0 <p< 2. Let

! = ]/p .
v dpo (51 )lj

He-13

-1/p. -
]Yj &5 - k(n)xc: + Xg s

wresl

(- ap)tele L1<p<2
k(t) = int +1 -y - fn(do(S,)), p=
0 y 0<p<1,

Thern V = 1im Vn exists a.s, and L(V) = u . Further, for 1 <p< 2, put

- N>

e 4 VP ys © VP =1
M dpo (s])szlyj 5J k(v X+ xg .
Then Mn 45 a martingale with respect to o(vl....,‘yn,iv....in) N>,

M=1lim Mn exists a8, and An Lg for everny 0<q<p,and L(M) = u .

|4 mand

EXAMPLE: Symmetric semistable measures.

We recall that an infinitely divisible measure u on E is said to bea
b (r,p)-semistable probability measure (0 <r <1, 0<p<2) ff

ou)* cxo for some Xq € E.

r
TN L

N

e AT A XA e
P et e Y 40““, AC",.Q;"““:,“ "au";“ LX)
R e e

Iy T DS WA AW W AN BN GONAOA0ARNTAGS
-,f_a “"i .""v.‘ﬁ;‘:‘i??':‘!—:‘;‘n.{‘i"‘.fﬁ‘ s"‘& AT A QRIS * D0 W he b ‘.C:"Q_ﬁt?«@‘.{t‘.;{i,é-‘;f"nfl‘gﬁ!p‘t:y
B A L G S P . yiagt oY ‘,#fﬁ LR ke
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Here, the neasure a : o is defined by (a : u)(B) = u(a']B) , B ¢ ZE ,at 0.
The spectral representation of characteristic function of semistable measures
was obtained independently by Krakowiak [9] and by Rajput and Rama-Murthy [16],

which, in the symmetric case, reduces to the following:

(4.6) ;(x') = expi |

rn j Leos(r™P (' \x)) - 1Jcldx)}
] .

- o

where ¢ 15 a finite symmetric measure on & = {x € E: r1/p< Px o<1,

A 4

S(x') = expt | [cos¢x',tx) - 1]v(dt)c(dx);

" [—‘ (0 ’a:)
where . is a discrete measure concentrated on the set {r"/p: n € Z: such that
Py = ™" L n e Z, we conclude that (4.4) is satisfied with (dx) =

c-](b):(dx) and -(dt) = 3{2)v(dt) . Now by elementary computations we obtain

R(u) = [(1/r - 1):'](A)ul;1/p .

where [t]r LT LY t < rk'] . In view of Corollary 4.3(v) we get

that

(4.7) e LQ0/r - l)c'](A)ij;1/p £, > S a.s.

J
1

" r~13

3
and in LY, for every 0<q<p,and Z(S) =u. Wehave obtained a series

representation of semistable random vectors in the symmetric case.

Now we note that the multipliers in (4.7) are bounded both sides, up to a con-
-1
stant myltiplier, by :]/p(L)nj /e , because rt < [t]r <t,t>0. Further,

OO AN AL Y
Lt ﬁ"‘}““pt*ﬁ" 'OE.‘OQ.’P t

) QOUOCOUE MR N ) AN BAAMASMOAINDAD
a'f‘n"‘;" bttt bater U K R R R
LR LASAML LN :‘s‘ l‘ Pt j@ﬁq\ a0t I ¢
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a p-stable limit is obtain in {4.7) when one replaces [(1/r - l)cd(:)\j]r by
(I;r-tir']\;)'j.Tnis, in conjunction with the contraction principle, explains

why the moment properties of stable and semistable distributions are so

closely re-ated. Using a different method of stochastic integeral this obser-

vation was alsc justified in Rosinski [20] p. 67-68 and comparisons of

moments of stabie and semistable measures were given.
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